Reciprocal oscillons and nonmonotonic fronts in forced nonequilibrium systems.

نویسندگان

  • Arik Yochelis
  • John Burke
  • Edgar Knobloch
چکیده

The formation of oscillons in a synchronously oscillating background is studied in the context of both damped and self-exciting oscillatory media. Using the forced complex Ginzburg-Landau equation we show that such states bifurcate from finite amplitude homogenous states near the 2:1 resonance boundary. In each case we identify a region in parameter space containing a finite multiplicity of coexisting stable oscillons with different structure. Stable time-periodic monotonic and nonmonotonic frontlike states are present in an overlapping region. Both types of structure are related to the presence of a Maxwell point between the zero and finite amplitude homogeneous states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Spatially Localized Oscillations in Periodically Forced Dissipative Systems

Formation of spatially localized oscillations in parametrically driven systems is studied, focusing on the dominant 2:1 resonance tongue. Both damped and self-excited oscillatory media are considered. Near the primary subharmonic instability such systems are described by the forced complex Ginzburg–Landau equation. The technique of spatial dynamics is used to identify three basic types of coher...

متن کامل

Turbulent fronts in resonantly forced oscillatory systems.

Phase fronts in the forced complex Ginzburg-Landau equation, a model of a resonantly forced oscillatory reaction-diffusion system, are studied in the 3:1 resonance regime. The focus is on the turbulent (Benjamin-Feir-unstable) regime of the corresponding unforced system; in the forced system, phase fronts between spatially uniform phase-locked states exhibit complex dynamics. In one dimension, ...

متن کامل

Oscillons in the planar Ginzburg–Landau equation with 2:1 forcing

Abstract Oscillons are spatially localized, time-periodic structures that have been observed in many natural processes, often under temporally periodic forcing. Near Hopf bifurcations, such systems can be formally reduced to forced complex Ginzburg–Landau equations, with oscillons then corresponding to stationary localized patterns. In this manuscript, stationary localized structures of the pla...

متن کامل

Synchronization of extended systems from internal coherence.

A condition for the synchronizability of a pair of extended systems governed by partial differential equations (PDEs), coupled through a finite set of variables, is commonly the existence of internal synchronization or internal coherence in each system separately. The condition was previously illustrated in a forced-dissipative system and is here extended to Hamiltonian systems using an example...

متن کامل

Fronts and patterns in a spatially forced CDIMA reaction.

We use the CDIMA chemical reaction and the Lengyel-Epstein model of this reaction to study resonant responses of a pattern-forming system to time-independent spatial periodic forcing. We focus on the 2 : 1 resonance, where the wavenumber of a one-dimensional periodic forcing is about twice the wavenumber of the natural stripe pattern that the unforced system tends to form. Within this resonance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 97 25  شماره 

صفحات  -

تاریخ انتشار 2006